Tác giả :
IMPLEMENTATION OF FACIAL EMOTION RECOGNITION USING CNN ON JETSON TX2
Phạm Minh Quyền, Phùng Thanh Huy, Đỗ Duy Tân, Huỳnh Hoàng Hà, Trương Quang Phúc
Trường Đại học Sư phạm Kỹ thuật TP.HCM, Việt Nam
Ngày toà soạn nhận bài 19/8/2020, ngày phản biện đánh giá 3/9/2020, ngày chấp nhận đăng 29/9/2020
TÓM TẮT
Trong bài báo này, tác giả sử dụng mạng nơ-ron tích chập, một trong những kiến trúc phổ biến của học sâu để nhận diện và phân loại cảm xúc khuôn mặt. Một cách tổng quát, các mạng nơ-ron được chọn có cấu trúc phức tạp và có tham số lớn, tác giả tập trung vào việc xây dựng một mạng nơ-ron đơn giản hơn và phù hợp với bộ dữ liệu thông qua phương pháp so sánh và đánh giá. Ngoài ra, tác giả cũng tập trung vào việc thu thập một tập dữ liệu đủ lớn để đạt kết quả cao. Cụ thể, tác giả lựa chọn sử dụng nền tảng phần cứng nhúng Jetson TX2 của NVIDIA để tận dụng khả năng tính toán của GPU nhằm tối ưu thời gian tính toán và huấn luyện dữ liệu. Trong đó, dữ liệu được sử dụng là FER2013 và RAF để huấn luyện và kiểm tra. Phương pháp sử dụng đã đạt được độ chính xác 72% trên tập dự liệu kiểm tra.
Từ khóa: Nhận diện; cảm xúc khuôn mặt; mạng nơ-ron; CNN; Jetson TX2.
ABSTRACT
In this paper, a convolutional neural network (CNN), one of the most popular deep learning architectures used for facial extraction research, has been implemented on NVIDIA Jetson TX2 hardware. Different from many existing approaches investigating CNN with complex structure and large parameters, we have focused on building a robust neural network through extensive performance comparison and evaluation. In addition, we have collected a dataset using a built-in camera on a laptop computer. Specifically, we have applied our model on Jetson TX2 hardware to take advantage of the computational power of the embedded GPU to optimize computation time and data training. In particular, both FER2013 and RAF datasets with seven basic emotions have been used for training and testing purposes. Finally, the evaluation results show that the proposed method achieves an accuracy of up to 72% on the testing dataset.
Keywords: recognition; facial emotion; neural network; CNN; Jetson TX2.
Full text (Click here)
Góp ý
Họ và tên: *  
Email: *  
Tiêu đề: *  
Mã xác nhận:
 
 
RadEditor - HTML WYSIWYG Editor. MS Word-like content editing experience thanks to a rich set of formatting tools, dropdowns, dialogs, system modules and built-in spell-check.
RadEditor's components - toolbar, content area, modes and modules
   
Toolbar's wrapper  
Content area wrapper
RadEditor's bottom area: Design, Html and Preview modes, Statistics module and resize handle.
It contains RadEditor's Modes/views (HTML, Design and Preview), Statistics and Resizer
Editor Mode buttonsStatistics moduleEditor resizer
 
 
RadEditor's Modules - special tools used to provide extra information such as Tag Inspector, Real Time HTML Viewer, Tag Properties and other.
   
 *
Copyright © Tạp Chí Khoa Học Giáo Dục Kỹ Thuật - Trường Đại Học Sư Phạm Kỹ Thuật - TP.HCM  
Địa chỉ: Phòng 601B, 1 Võ Văn Ngân, Quận Thủ Đức, Thành Phố Hồ Chí Minh. 
Điện thoại: 08-3722.1223 (8168)
Email:
tapchikhgdkt@hcmute.edu.vn

                                      
                                

Truy cập tháng: 72,548

Tổng truy cập:1,174,477